Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Vet Sci ; 10: 1183223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818391

RESUMO

Intoduction: In veterinary medicine, airway management of cats under general anesthesia is performed with an endotracheal tube (ETT) or supraglottic airway device (SGAD). This study aims to describe the use of computational fluid dynamics (CFD) to assess the velocities, pressures, and resistances of cats with ETT or SGAD. Methods: A geometrical reconstruction model of the device, trachea, and lobar bronchi was carried out from computed tomography (CT) scans that include the head, neck, and thorax. Twenty CT scans of cats under general anesthesia using ETT (n = 10) and SGAD (n = 10) were modeled and analyzed. An inspiratory flow of 2.4 L/min was imposed in each model and velocity (m/s), general and regional pressures (cmH2O) were computed. General resistance (cmH2O/L/min) was calculated using differential pressure differences between the device inlet and lobar bronchi. Additionally, regional resistances were calculated at the device's connection with the breathing circuit (region A), at the glottis area for the SGAD, and the area of the ETT exit (bevel) (region B) and the device itself (region C). Results: Recirculatory flow and high velocities were found at the ETT's bevel and at the glottis level in the SGAD group. The pressure gradient (Δp) was more enhanced in the ETT cases compared with the SGAD cases, where the pressure change was drastic. In region A, the Δp was higher in the ETT group, while in regions B and C, it was higher in the SGAD group. The general resistance was not statistically significant between groups (p = 0.48). Higher resistances were found at the region A (p = <0.001) in the ETT group. In contrast, the resistance was higher in the SGAD cases at the region B (p = 0.001). Discussion: Overall, the provided CT-based CFD analysis demonstrated regional changes in airway pressure and resistance between ETT and SGAD during anesthetic flow conditions. Correct selection of the airway device size is recommended to avoid upper airway obstruction or changes in flow parameters.

3.
Front Vet Sci ; 10: 1176757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533457

RESUMO

Salbutamol is a bronchodilatator commonly used for the treatment of feline inflammatory lower airway disease, including asthma or acute bronchospasm. As in humans, a pressurized metered dose inhaler (pMDI) is used in conjunction with a spacer and a spherical mask to facilitate salbutamol administration. However, efficacy of inhalation therapy is influenced by different factors including the non-cooperative character of cats. In this study, the goal was to use computational fluid dynamics (CFD) to analyze the impact of breathing patterns and salbutamol particle size on overall drug transport and deposition using a specific spherical mask and spacer designed for cats. A model incorporating three-dimensional cat airway geometry, a commercially available spherical mask, and a 10 cm spacer, was used for CFD analysis. Two peak inspiratory flows were tested: 30 mL/s and 126 mL/s. Simulations were performed with 30s breathing different inspiratory and expiratory times, respiratory frequencies and peaks. Droplet spray transport and deposition were simulated with different particle sizes typical of the drug delivery therapies (1, 5, 10, and 15 µm). The percentage of particle deposition into the device and upper airways decreased with increasing particle diameter during both flows imposed in this cat model. During increased mean ventilatory rate (MVR) conditions, most of the salbutamol was lost in the upper airways. And during decreased MVR conditions, most of the particles remained in suspension (still in hold-up) between the mask and the carina, indicating the need for more than 30 s to be transported. In both flows the percentage of particles traveling to the lung was low at 1.5%-2.3%. In conclusion, in contrast to what has been described in the human literature, the results from this feline model suggest that the percentage of particles deposited on the upper airway decreases with increasing particle diameter.

4.
Front Vet Sci ; 10: 1172140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520001

RESUMO

Animals have been widely utilized as surrogate models for humans in exposure testing, infectious disease experiments, and immunology studies. However, respiratory diseases affect both humans and animals. These disorders can spontaneously affect wild and domestic animals, impacting their quality and quantity of life. The origin of such responses can primarily be traced back to the pathogens deposited in the respiratory tract. There is a lack of understanding of the transport and deposition of respirable particulate matter (bio-aerosols or viruses) in either wild or domestic animals. Moreover, local dosimetry is more relevant than the total or regionally averaged doses in assessing exposure risks or therapeutic outcomes. An accurate prediction of the total and local dosimetry is the crucial first step to quantifying the dose-response relationship, which in turn necessitates detailed knowledge of animals' respiratory tract and flow/aerosol dynamics within it. In this review, we examined the nasal anatomy and physiology (i.e., structure-function relationship) of different animals, including the dog, rat, rabbit, deer, rhombus monkey, cat, and other domestic and wild animals. Special attention was paid to the similarities and differences in the vestibular, respiratory, and olfactory regions among different species. The ventilation airflow and behaviors of inhaled aerosols were described as pertinent to the animals' mechanisms for ventilation modulation and olfaction enhancement. In particular, sniffing, a breathing maneuver that animals often practice enhancing olfaction, was examined in detail in different animals. Animal models used in COVID-19 research were discussed. The advances and challenges of using numerical modeling in place of animal studies were discussed. The application of this technique in animals is relevant for bidirectional improvements in animal and human health.

5.
Animals (Basel) ; 11(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34438888

RESUMO

Pressurized metered-dose inhalers (pMDI) with or without spacers are commonly used for the treatment of feline inflammatory airway disease. During traditional airways treatments, a substantial amount of drugs are wasted upstream of their target. To study the efficiency of commonly used devices in the transport of inhaled salbutamol, different computational models based on two healthy adult client-owned cats were developed. Computed tomographic images from one cat were used to generate a three-dimensional geometry, and two masks (spherical and conical shapes) and two spacers (10 and 20 cm) completed the models. A second cat was used to generate a second model having an endotracheal tube (ETT) with and without the same spacers. Airflow, droplet spray transport, and deposition were simulated and studied using computational fluid dynamics techniques. Four regions were evaluated: device, upper airways, primary bronchi, and downstream lower airways/parenchyma ("lung"). Regardless of the model, most salbutamol is deposited in devices and/or upper airways. In general, particles reaching the lung varied between 5.8 and 25.8%. Compared with the first model, pMDI application through the ETT with or without a spacer had significantly higher percentages of particles reaching the lung (p = 0.006).

6.
Ann Biomed Eng ; 47(6): 1409-1421, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30843148

RESUMO

With the aim of assisting interventional cardiologists during decision making for revascularization, reduced-order (0D) approaches have been developed to predict the true fractional flow reserve (FFRTrue) of individual stenoses in multiple-lesion arrangements. In this study, a general equation was derived to predict the FFRTrue of a left main (LM) coronary stenosis with downstream lesions, one in the left anterior descending (LAD) and the other in the left circumflex (LCx) artery, and distinct collateral circulations supplying each daughter artery. An in vitro model mimicking the fractal nature of LM bifurcation trees with collateral branches was developed to validate the FFR values obtained with the prediction model (FFR Pred Model ). Our results demonstrated that: (1) considering collaterals significantly improved the FFR Pred Model estimation for a moderate LM stenosis with two downstream lesions as compared to computations with no collateral consideration (p < 0.001): mean absolute error |FFR Pred Model - FFRTrue| ± SD was equal to 0.02 ± 0.01 vs. 0.04 ± 0.02 respectively, and (2) Deviations from FFRTrue for LM stenoses are correlated to both, downstream lesion severities and collateral developments. The present study supports the hypothesis that collateral circulations supplying the LAD and LCx must be considered when predicting the FFRTrue of an LM stenosis with downstream lesions.


Assuntos
Estenose Coronária/fisiopatologia , Reserva Fracionada de Fluxo Miocárdico , Modelos Cardiovasculares , Algoritmos , Circulação Coronária , Hemodinâmica , Humanos
7.
J Ophthalmol ; 2016: 3578617, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27413542

RESUMO

A finite element model (FE) of the eye including cornea, sclera, crystalline lens, and ciliary body was created to analyze the influence of the silicone encircling bandwidth and the tightness degree on the myopia induced by scleral buckling (SB) procedure for rhegmatogenous retinal detachment. Intraocular pressure (IOP) was applied to the reference geometry of the FE model and then SB surgery was simulated with encircling bandwidths of 1, 2, and 2.5 mm. Different levels of tightening and three values of IOP were applied. The anterior segment resulted as unaffected by the surgery. The highest value of Cauchy stress appeared in the surroundings of the implant, whereas no increment of stress was observed either in anterior segment or in the optic nerve head. The initial IOP did not appear to play any role in the induced myopia. The wider the band, the greater the induced myopia: 0.44, 0.88, and 1.07 diopters (D) for the 1, 2, and 2.5 mm bandwidth, respectively. Therefore, patients become more myopic with a wider encircling element. The proposed simulations allow determining the effect of the bandwidth or the tightness degree on the axial lengthening, thus predicting the myopic increment caused by the encircling surgery.

8.
Cardiovasc Intervent Radiol ; 38(5): 1192-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25795475

RESUMO

PURPOSE: The purpose of the study is to evaluate the influence of respiratory-induced vena caval hemodynamic changes on filter migration/penetration. MATERIALS AND METHODS: After placement of either a Gunther Tulip or Celect IVC filter, 101 consecutive patients scheduled for filter retrieval were prospectively enrolled in this study. Pre-retrieval CT scans were used to assess filter complications and to calculate cross-sectional area in three locations: at level of filter strut fixation, 3 cm above and 3 cm below. A 3D finite element simulation was constructed on these data and direct IVC pressure was recorded during filter retrieval. Cross-sectional areas and pressures of the vena cava were measured during neutral breathing and in Valsalva maneuver and identified filter complications were recorded. A statistical analysis of these variables was then performed. RESULTS: During Valsalva maneuvers, a 60 % decrease of the IVC cross-sectional area and a fivefold increase in the IVC pressure were identified (p < 0.001). There was a statistically significant difference in the reduction of the cross-sectional area at the filter strut level (p < 0.001) in patient with filter penetration. Difficulty in filter retrieval was higher in penetrated or tilted filters (p < 0.001; p = 0.005). 3D computational models showed significant IVC deformation around the filter during Valsalva maneuver. CONCLUSION: Caval morphology and hemodynamics are clearly affected by Valsalva maneuvers. A physiological reduction of IVC cross-sectional area is associated with higher risk of filter penetration, despite short dwell times. Physiologic data should be used to improve future filter designs to remain safely implanted over longer dwell times.


Assuntos
Migração de Corpo Estranho/diagnóstico por imagem , Hemodinâmica/fisiologia , Respiração , Tomografia Computadorizada por Raios X , Filtros de Veia Cava , Veia Cava Inferior/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Remoção de Dispositivo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Radiografia Intervencionista , Fatores de Risco , Manobra de Valsalva/fisiologia , Adulto Jovem
9.
World J Radiol ; 6(10): 833-9, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25349666

RESUMO

AIM: To study changes produced within the inferior vena cava (IVC) during respiratory movements and identify their possible clinical implications. METHODS: This study included 100 patients (46 women; 54 men) over 18 years of age who required an abdominal computed tomography (CT) and central venous access. IVC cross-sectional areas were measured on CT scans at three levels, suprarenal (SR), juxtarenal (JR) and infrarenal (IR), during neutral breathing and again during the Valsalva maneuver. All patients were instructed on how to perform a correct Valsalva maneuver. In order to reduce the total radiation dose in our patients, low-dose CT protocols were used in all patients. The venous blood pressure (systolic, diastolic and mean) was invasively measured at the same three levels with neutral breathing and the Valsalva maneuver during venous port implantation. From CT scans, three-dimensional models of the IVC were constructed and a collapsibility index was calculated for each patient. These data were then correlated with venous pressures and cross-sectional areas. RESULTS: The mean patient age was 51.64 ± 12.01 years. The areas of the ellipse in neutral breathing were 394.49 ± 85.83 (SR), 380.10 ± 74.55 (JR), and 342.72 ± 49.77 mm(2) (IR), and 87.46 ± 18.35 (SR), 92.64 ± 15.36 (JR) and 70.05 ± 9.64 mm(2) (IR) during the Valsalva (Ps < 0.001). There was a correlation between areas in neutral breathing and in the Valsalva maneuver (P < 0.05 in all areas). Large areas decreased more than smaller areas. The collapsibility indices were 0.49 ± 0.06 (SR), 0.50 ± 0.04 (JR) and 0.50 ± 0.04 (IR), with no significant differences in any region. Reconstructed three-dimensional models showed a flattening of the IVC during Valsalva, adopting an ellipsoid cross-sectional shape. The mean pressures with neutral breathing were 9.44 ± 1.78 (SR), 9.40 ± 1.44 (JR) and 8.84 ± 1.03 mmHg (IR), and 81.08 ± 21.82 (SR), 79.88 ± 19.01 (JR) and 74.04 ± 16.56 mmHg (IR) during Valsalva (Ps < 0.001). There was a negative correlation between cross-sectional caval area and venous blood pressure, but this was not statistically significant in any of the cases. There was a significant correlation between diastolic and mean pressures measured during neutral breathing and in Valsalva. CONCLUSION: Respiratory movements have a major influence on IVC dynamics. The increase in intracaval pressure during Valsalva results in a significant decrease in the IVC cross-sectional area.

10.
J Mech Behav Biomed Mater ; 34: 217-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24607760

RESUMO

Although stenting is the most commonly performed procedure for the treatment of coronary atherosclerotic lesions, in-stent restenosis (ISR) remains one of the most serious clinical complications. An important stimulus to ISR is the altered hemodynamics with abnormal shear stresses on endothelial cells generated by the stent presence. Computational fluid dynamics is a valid tool for studying the local hemodynamics of stented vessels, allowing the calculation of the wall shear stress (WSS), which is otherwise not directly possible to be measured in vivo. However, in these numerical simulations the arterial wall and the stent are considered rigid and fixed, an assumption that may influence the WSS and flow patterns. Therefore, the aim of this work is to perform fluid-structure interaction (FSI) analyses of a stented coronary artery in order to understand the effects of the wall compliance on the hemodynamic quantities. Two different materials are considered for the stent: cobalt-chromium (CoCr) and poly-l-lactide (PLLA). The results of the FSI and the corresponding rigid-wall models are compared, focusing in particular on the analysis of the WSS distribution. Results showed similar trends in terms of instantaneous and time-averaged WSS between compliant and rigid-wall cases. In particular, the difference of percentage area exposed to TAWSS lower than 0.4Pa between the CoCr FSI and the rigid-wall cases was about 1.5% while between the PLLA cases 1.0%. The results indicate that, for idealized models of a stented coronary artery, the rigid-wall assumption for fluid dynamic simulations appears adequate when the aim of the study is the analysis of near-wall quantities like WSS.


Assuntos
Vasos Coronários , Hidrodinâmica , Modelos Biológicos , Stents , Fenômenos Biomecânicos , Cromo , Cobalto , Vasos Coronários/fisiologia , Hemodinâmica , Poliésteres , Estresse Mecânico
11.
Am J Physiol Heart Circ Physiol ; 301(3): H1097-106, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21685261

RESUMO

Coronary bifurcations represent specific regions of the arterial tree that are susceptible to atherosclerotic lesions. While the effects of vessel compliance, curvature, pulsatile blood flow, and cardiac motion on coronary endothelial shear stress have been widely explored, the effects of myocardial contraction on arterial wall stress/strain (WS/S) and vessel stiffness distributions remain unclear. Local increase of vessel stiffness resulting from wall-strain stiffening phenomenon (a local process due to the nonlinear mechanical properties of the arterial wall) may be critical in the development of atherosclerotic lesions. Therefore, the aim of this study was to quantify WS/S and stiffness in coronary bifurcations and to investigate correlations with plaque sites. Anatomic coronary geometry and cardiac motion were generated based on both computed tomography and MRI examinations of eight patients with minimal coronary disease. Computational structural analyses using the finite element method were subsequently performed, and spatial luminal arterial wall stretch (LW(Stretch)) and stiffness (LW(Stiff)) distributions in the left main coronary bifurcations were calculated. Our results show that all plaque sites were concomitantly subject to high LW(Stretch) and high LW(Stiff), with mean amplitudes of 34.7 ± 1.6% and 442.4 ± 113.0 kPa, respectively. The mean LW(Stiff) amplitude was found slightly greater at the plaque sites on the left main coronary artery (mean value: 482.2 ± 88.1 kPa) compared with those computed on the left anterior descending and left circumflex coronary arteries (416.3 ± 61.5 and 428.7 ± 181.8 kPa, respectively). These findings suggest that local wall stiffness plays a role in the initiation of atherosclerotic lesions.


Assuntos
Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico , Vasos Coronários/patologia , Imageamento por Ressonância Magnética , Contração Miocárdica , Placa Aterosclerótica/diagnóstico , Tomografia Computadorizada por Raios X , Adulto , Idoso , Fenômenos Biomecânicos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Elasticidade , Feminino , Análise de Elementos Finitos , Hemodinâmica , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Dinâmica não Linear , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Placa Aterosclerótica/fisiopatologia , Valor Preditivo dos Testes , Estresse Mecânico , Fatores de Tempo
12.
Ann Biomed Eng ; 37(3): 503-15, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19130229

RESUMO

A three-dimensional computational fluid dynamics (CFD) method has been developed to simulate the flow in a pumping left ventricle. The proposed method uses magnetic resonance imaging (MRI) technology to provide a patient specific, time dependent geometry of the ventricle to be simulated. Standard clinical imaging procedures were used in this study. A two-dimensional time-dependent orifice representation of the heart valves was used. The location and size of the valves is estimated based on additional long axis images through the valves. A semi-automatic grid generator was created to generate the calculation grid. Since the time resolution of the MR scans does not fit the requirements of the CFD calculations a third order bezier approximation scheme was developed to realize a smooth wall boundary and grid movement. The calculation was performed by a Navier-Stokes solver using the arbitrary Lagrange-Euler (ALE) formulation. Results show that during diastole, blood flow through the mitral valve forms an asymmetric jet, leading to an asymmetric development of the initial vortex ring. These flow features are in reasonable agreement with in vivo measurements but also show an extremely high sensitivity to the boundary conditions imposed at the inflow. Changes in the atrial representation severely alter the resulting flow field. These shortcomings will have to be addressed in further studies, possibly by inclusion of the real atrial geometry, and imply additional requirements for the clinical imaging processes.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Ventrículos do Coração/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Fluxo Pulsátil/fisiologia , Função Ventricular Esquerda/fisiologia , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...